Time-Varying Noise Estimation for Speech Enhancement and Recognition Using Sequential Monte Carlo Method
نویسندگان
چکیده
We present a method for sequentially estimating time-varying noise parameters. Noise parameters are sequences of time-varying mean vectors representing the noise power in the log-spectral domain. The proposed sequential Monte Carlo method generates a set of particles in compliance with the prior distribution given by clean speech models. The noise parameters in this model evolve according to random walk functions and the model uses extended Kalman filters to update the weight of each particle as a function of observed noisy speech signals, speech model parameters, and the evolved noise parameters in each particle. Finally, the updated noise parameter is obtained by means of minimum mean square error (MMSE) estimation on these particles. For efficient computations, the residual resampling andMetropolis-Hastings smoothing are used. The proposed sequential estimation method is applied to noisy speech recognition and speech enhancement under strongly time-varying noise conditions. In both scenarios, this method outperforms some alternative methods.
منابع مشابه
Sequential Noise Compensation by Sequential Monte Carlo Method
We present a sequential Monte Carlo method applied to additive noise compensation for robust speech recognition in time-varying noise. The method generates a set of samples according to the prior distribution given by clean speech models and noise prior evolved from previous estimation. An explicit model representing noise effects on speech features is used, so that an extended Kalman filter is...
متن کاملSpeech Enhancement Employing Variational Noise Model Composition for Robust Speech Recognition in Time-Varying Noisy Environments
This study proposes an effective noise estimation method for robust speech recognition in time-varying noise conditions. The proposed noise estimation scheme employs the Variation Model Composition (VMC) method, where multiple noise models are generated by selectively applying perturbation factors to the mean parameters of a basis noise model. The noise estimate is obtained by using the posteri...
متن کاملEstimating noise from noisy speech features with a monte carlo variant of the expectation maximization algorithm
In this work, we derive a Monte Carlo expectation maximization algorithm for estimating noise from a noisy utterance. In contrast to earlier approaches, where the distribution of noise was estimated based on a vector Taylor series expansion, we use a combination of importance sampling and Parzen-window density estimation to numerically approximate the occurring integrals with the Monte Carlo me...
متن کاملSpeech Enhancement Using Gaussian Mixture Models, Explicit Bayesian Estimation and Wiener Filtering
Gaussian Mixture Models (GMMs) of power spectral densities of speech and noise are used with explicit Bayesian estimations in Wiener filtering of noisy speech. No assumption is made on the nature or stationarity of the noise. No voice activity detection (VAD) or any other means is employed to estimate the input SNR. The GMM mean vectors are used to form sets of over-determined system of equatio...
متن کاملRecent Advancements in Speech Enhancement
Speech enhancement is a long standing problem with numerous applications ranging from hearing aids, to coding and automatic recognition of speech signals. In this survey paper we focus on enhancement from a single microphone, and assume that the noise is additive and statistically independent of the signal. We present the principles that guide researchers working in this area, and provide a det...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- EURASIP J. Adv. Sig. Proc.
دوره 2004 شماره
صفحات -
تاریخ انتشار 2004